Back to Search Start Over

A State Monitoring Method of Gas Regulator Station Based on Evidence Theory Driven by Time-Domain Information

Authors :
Bo Wang
Mengyin Fu
Zhihong Deng
Jingyuan Jia
Source :
IEEE Transactions on Industrial Electronics. 69:694-702
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

Regulator stations are widely used in gas transmission and distribution systems. Their state monitoring is of great significance to the safe operation of gas pipe networks. Due to the complexity of the working environment and the limitation of sensors, the acquired information is uncertain, which makes the state monitoring result prone to errors. The evidence theory has the ability to solve the uncertainty problem effectively. Most of the improvement methods of the evidence theory are in the spatial domain. These methods are not applicable to the fusion of the time-domain information. In this article, an improved method of the evidence theory is proposed for the state monitoring of a gas regulator station. It can meet the requirement of the dynamic fusion of the time-domain information. First, the back-propagation neural network is used to judge whether the evidence conflicts with each other. The simulation results demonstrate that it can judge the conflicts well. On this basis, the relative conflict factor is proposed to modify the evidence, and the calculation method of the adaptive time attenuation factor is proposed to reduce the accumulated error. The dynamic fusion of the time-domain information is realized by combining the time attenuation factor and the relative conflict factor. Finally, the proposed method is applied to the state monitoring of the gas regulator station. The feasibility and effectiveness of the method are verified by experiments. It verifies that the variation of the support degree of the proposed method for the correct proposition is 0.1478 higher than that of the temporal evidence combination based on relative reliability factor when the evidence is strongly conflicting.

Details

ISSN :
15579948 and 02780046
Volume :
69
Database :
OpenAIRE
Journal :
IEEE Transactions on Industrial Electronics
Accession number :
edsair.doi...........a42192cafc869e6436aa3e8a2add320e
Full Text :
https://doi.org/10.1109/tie.2021.3055133