Back to Search Start Over

Abstract 342: Coagulation Factor XII Promotes Platelet Consumption in the Presence of Microbial Polyphosphate Under Shear Flow

Authors :
Rolf T. Urbanus
David Gailani
Stéphanie E. Reitsma
Andras Gruber
Owen J. T. McCarty
James H. Morrissey
Jevgenia Zilberman-Rudenko
Erik I. Tucker
Cristina Puy
Chantal P. Wiesenekker
Richard J. Travers
Stephanie A. Smith
Coen Maas
Source :
Arteriosclerosis, Thrombosis, and Vascular Biology. 37
Publication Year :
2017
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2017.

Abstract

Background: Terminal complications of bacterial sepsis include development of consumptive coagulopathy referred to as disseminated intravascular coagulation. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway is capable of promoting thrombin generation and platelet activation and consumption in whole blood distal to thrombus formation under shear ex vivo and in vivo . Aim: Test the hypothesis that the presence of long-chain polyP in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Methods and Results: Presence of long-chain polyP in whole blood promoted platelet aggregation on immobilized collagen surfaces under shear flow. Long-chain polyP enhanced fibrin formation and shortened clotting times of plasma and whole blood. The addition of long-chain polyP promoted platelet P-selectin expression, microaggregate formation and platelet consumption in the bloodstream under shear in a FXII-dependent manner. Moreover, long-chain polyP accelerated thrombus formation on immobilized collagen surfaces under shear flow. Distal to the sites of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the bloodstream. Inhibiting contact activation of the coagulation pathway reduced fibrin formation on collagen as well as platelet consumption in the bloodstream distal to the site of thrombus formation. Conclusions: This study demonstrates that bacterial-type long-chain polyP promotes FXII-mediated thrombin generation and platelet activation in the flowing blood and could exaggerate sepsis-associated thrombotic processes, consumptive coagulopathy and thrombocytopenia.

Details

ISSN :
15244636 and 10795642
Volume :
37
Database :
OpenAIRE
Journal :
Arteriosclerosis, Thrombosis, and Vascular Biology
Accession number :
edsair.doi...........a43820169403dcda4f5cb89cc111699e
Full Text :
https://doi.org/10.1161/atvb.37.suppl_1.342