Back to Search
Start Over
Exploring the correlation between MoS2 nanosheets and 3D graphene-based nanostructures for reversible lithium storage
- Source :
- Applied Surface Science. 459:98-104
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Graphene-based materials are an attractive lithium storage material for next-generation lithium-based batteries due to its high capacity, surface area and conductivity. However, one of the major problems for its broad application in batteries is a large irreversible capacity, and the poor cycle stability and low rate capability remain. Here, we report a MoS2-stabilized hierarchical three-dimensional graphene-based nanostructure, in which the MoS2 layer acts as a stabilizer as well as an active material. We show that the presence of MoS2 thin layer adjacent to the graphene surface can improve lithium storage capability by improving lithium ion diffusion property with fast Li-ion transport kinetic. On the basis of experimental and theoretical approaches, we ascribe the improved reversible lithium storage to the unusual reversible Li-MoS2 redox reaction and charge distribution on the graphene and MoS2 interlayers. These findings will provide a potential new direction in the design of electrode materials for advanced lithium storage technologies.
- Subjects :
- Battery (electricity)
Nanostructure
Materials science
Graphene
General Physics and Astronomy
Charge density
chemistry.chemical_element
Nanotechnology
02 engineering and technology
Surfaces and Interfaces
General Chemistry
Conductivity
010402 general chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
01 natural sciences
0104 chemical sciences
Surfaces, Coatings and Films
Anode
law.invention
chemistry
law
Lithium
0210 nano-technology
Layer (electronics)
Subjects
Details
- ISSN :
- 01694332
- Volume :
- 459
- Database :
- OpenAIRE
- Journal :
- Applied Surface Science
- Accession number :
- edsair.doi...........a482e937c1213ace46fb1551aa3e0635
- Full Text :
- https://doi.org/10.1016/j.apsusc.2018.07.027