Back to Search Start Over

A two-dimensional response to a tropical storm on the Gulf of Mexico shelf

Authors :
J. Carter Ohlmann
Peter Niiler
Source :
Journal of Marine Systems. 29:87-99
Publication Year :
2001
Publisher :
Elsevier BV, 2001.

Abstract

Surface current data from drifting buoys and remotely sensed wind data recorded over the continental shelf in the northeastern Gulf of Mexico during the passage of tropical storm Josephine in October 1996 are examined. Drifter data show the existence of a strong surface jet (velocities reaching 1 m s −1 ) that moves up the west Florida shelf and westward along the Louisiana–Texas shelf, and lasts for nearly 1 week. The coastal jet occurs during an intense synoptic scale wind event where wind speeds reach 15 m s −1 . A simple force balance and statistical analysis are performed to assess the role of strong wind forcing. The primary balance shows an Ekman-type current. The role of local acceleration is greatest when winds are directed along bathymetry. A simple two-dimensional strongly forced shelf response model developed from the linear steady-state momentum equations also indicates larger along-shore currents due to both Ekman-type forcing by cross-shore winds and a cross-shore pressure gradient arising from conservation of mass. Model parameters fit empirically are within 15% of theoretical values. The simple model explains 30% and 46% of the variance in the observed along-shore and cross-shore surface currents, respectively.

Details

ISSN :
09247963
Volume :
29
Database :
OpenAIRE
Journal :
Journal of Marine Systems
Accession number :
edsair.doi...........a57163b20741486d04b93c0f2dea9a67
Full Text :
https://doi.org/10.1016/s0924-7963(01)00011-2