Back to Search Start Over

Dietary sucrose induces metabolic inflammation and atherosclerotic cardiovascular diseases more than dietary fat in LDLr ApoB100/100 mice

Authors :
Renato Tadeu Nachbar
Andréanne Gagné
Philippe Joubert
Mylène Blais
Rihab Bouchareb
Patrick Mathieu
André Marette
Thibault V. Varin
Marjorie Boyer
Benjamin A. H. Jensen
Denis Roy
Laís R. Perazza
Noëmie Daniel
Michaël Bouchard
Patricia L. Mitchell
Benoit J. Arsenault
Gary Sweeney
Source :
Atherosclerosis. 304:9-21
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Background and aims Poor dietary habits contribute to the obesity pandemic and related cardiovascular diseases but the respective impact of high saturated fat versus added sugar consumption remains debated. Herein, we aimed to disentangle the individual role of dietary fat versus sugar in cardiometabolic disease progression. Methods We fed pro-atherogenic LDLr−/− ApoB100/100 mice either a low-fat/high-sucrose (LFHS) or a high-fat/low-sucrose (HFLS) diet for 24 weeks. Weekly body weight gain was registered. 16S rRNA gene-based gut microbial analysis was performed to investigate gut microbial modulations. Intraperitoneal insulin (ipITT) and oral glucose tolerance test (oGTT) were conducted to assess glucose homeostasis and insulin sensitivity. Cytokines were assessed in fasted plasma, epididymal white adipose tissue and liver lysates. Heart function was evaluated by echocardiography. Aortic atheroma lesions were quantified according to the en face technique. Results HFLS feeding increased obesity, insulin resistance and dyslipidemia compared to LFHS feeding. Conversely, high sucrose consumption decreased gut microbial diversity while augmenting inflammation and the adaptative immune defense against metabolic endotoxemia and reduced macrophage cholesterol efflux capacity. This led to more severe cardiovascular complications as revealed by remarkably high level of atherosclerotic lesions and the early development of cardiac dysfunction in LFHS vs HFLS fed mice. Conclusions We uncoupled obesity-associated insulin resistance from cardiovascular diseases and provided novel evidence that dietary sucrose, not fat, is the main driver of metabolic inflammation accelerating severe atherosclerosis in hyperlipidemic mice.

Details

ISSN :
00219150
Volume :
304
Database :
OpenAIRE
Journal :
Atherosclerosis
Accession number :
edsair.doi...........a6d9865ce64a3f0b07a6c0b0d67ae8cd
Full Text :
https://doi.org/10.1016/j.atherosclerosis.2020.05.002