Back to Search Start Over

Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak

Authors :
R. J. Jayakumar
A.W. Leonard
I.A. Gorelov
Masakatsu Murakami
J.M. Lohr
Y. R. Lin-Liu
P.A. Politzer
J. E. Kinsey
S.L. Allen
William Heidbrink
C.J. Lasnier
E. A. Lazarus
A.M. Garofalo
A. D. Turnbull
K. H. Burrell
Ming-Sheng Chu
B. W. Rice
Daniel Thomas
T.C. Luce
L.L. Lao
E. J. Doyle
W.P. West
R.J. La Haye
C.C. Petty
D. P. Brennen
C. M. Greenfield
M. R. Wade
C. L. Hsieh
R. Prater
J.G. Watkins
R. I. Pinsker
P. Gohil
M.A. Mahdavi
T.A. Casper
T. S. Taylor
A.W. Hyatt
M. A. Makowski
J.R. Ferron
R. J. Groebner
J.C. DeBoo
B.D. Bray
T. L. Rhodes
Curtis L. Rettig
D.R. Baker
Max E Austin
E. J. Strait
K. L. Wong
Source :
Physics of Plasmas. 8:2208-2216
Publication Year :
2001
Publisher :
AIP Publishing, 2001.

Abstract

Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ∼10 has been sustained for >5 τE with qmin>1.5. These edge localized modes (ELMing) H-mode discharges have β∼5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89∼7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges.

Details

ISSN :
10897674 and 1070664X
Volume :
8
Database :
OpenAIRE
Journal :
Physics of Plasmas
Accession number :
edsair.doi...........a8dce53c099955c2849e09faa6f35ab3
Full Text :
https://doi.org/10.1063/1.1355980