Back to Search Start Over

Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm

Authors :
Erik Cuevas
Gonzalo Pajares
Diego Oliva
Salvador Hinojosa
Jorge Gálvez
Omar Avalos
Source :
Neural Computing and Applications. 29:319-335
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

This paper presents two multi-criteria optimization techniques: the Multi-Objective Crow Search Algorithm (MOCSA) and an improved chaotic version called Multi-Objective Chaotic Crow Search Algorithm (MOCCSA). Both methods MOCSA and MOCCSA are based on an enhanced version of the recently published Crow Search Algorithm. Crows are intelligent animals with interesting strategies for protecting their food hatches. This compelling behavior is extended into a Multi-Objective approach. MOCCSA uses chaotic-based criteria on the optimization process to improve the diversity of solutions. To determinate if the performance of the algorithm is significantly enhanced, the incorporation of a chaotic operator is further validated by a statistical comparison between the proposed MOCCSA and its chaotic-free counterpart (MOCSA) indicating that the results of the two algorithms are significantly different from each other. The performance of MOCCSA is evaluated by a set of standard benchmark functions, and the results are contrasted with two well-known algorithms: Multi-Objective Dragonfly Algorithm and Multi-Objective Particle Swarm Optimization. Both quantitative and qualitative results show competitive results for the proposed approach.

Details

ISSN :
14333058 and 09410643
Volume :
29
Database :
OpenAIRE
Journal :
Neural Computing and Applications
Accession number :
edsair.doi...........a8efc5d2b3f8cc8b9abeb23433c23c2f
Full Text :
https://doi.org/10.1007/s00521-017-3251-x