Back to Search Start Over

Encapsulation of ferrocene by self-assembled rosette nanotubes: An investigation using statistical mechanical theory of molecular liquids

Authors :
Takeshi Yamazaki
Hicham Fenniri
Source :
Journal of Molecular Liquids. 217:70-74
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Encapsulation thermodynamics of a guest molecule by self-assembled rosette nanotubes (RNTs) was investigated using the statistical mechanical theory of molecular liquids also known as 3D-RISM theory. Ferrocene was chosen as a guest molecule because it is a good mimic for a small drug molecule in terms of logP value. The present computational study predicts that ferrocene can penetrate the channel of all three RNTs examined, however, the potential of mean force profile along the RNT channel suggested that RNT that has the smallest channel diameter has relatively high potential barrier for uptake and release of ferrocene, and therefore it was suggested that this could be a suitable mechanism to trap (during self-assembly) and release (during disassembly) a drug candidate. This work suggests also that tuning the RNT channel dimensions and chemistry should allow us to develop a palette of RNT delivery systems for a variety of drugs.

Details

ISSN :
01677322
Volume :
217
Database :
OpenAIRE
Journal :
Journal of Molecular Liquids
Accession number :
edsair.doi...........a9a8d65e5c50298565caa559296d6da5
Full Text :
https://doi.org/10.1016/j.molliq.2015.11.055