Back to Search
Start Over
On the generalized Euler–Stieltjes constants for the Rankin–Selberg L-function
- Source :
- International Journal of Number Theory. 13:1363-1379
- Publication Year :
- 2016
- Publisher :
- World Scientific Pub Co Pte Lt, 2016.
-
Abstract
- Let [Formula: see text] be a number field of a finite degree and let [Formula: see text] be the Rankin–Selberg [Formula: see text]-function associated to unitary cuspidal automorphic representations [Formula: see text] and [Formula: see text] of [Formula: see text] and [Formula: see text], respectively. The main result of the paper is an asymptotic formula for evaluation of coefficients appearing in the Laurent (Taylor) series expansion of the logarithmic derivative of the function [Formula: see text] at [Formula: see text]. As a corollary, we derive orthogonality and weighted orthogonality relations.
- Subjects :
- Pure mathematics
Algebra and Number Theory
Computer Science::Information Retrieval
010102 general mathematics
Mathematical analysis
Astrophysics::Instrumentation and Methods for Astrophysics
Automorphic form
Stieltjes constants
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
Function (mathematics)
Algebraic number field
01 natural sciences
0103 physical sciences
Computer Science::General Literature
Asymptotic formula
010307 mathematical physics
L-function
Logarithmic derivative
0101 mathematics
Rankin–Selberg method
Mathematics
Subjects
Details
- ISSN :
- 17937310 and 17930421
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- International Journal of Number Theory
- Accession number :
- edsair.doi...........a9c50488e40eeea3831136832eae3fbe
- Full Text :
- https://doi.org/10.1142/s1793042117500762