Back to Search Start Over

Geochemical and sedimentological responses of Arctic glacial Lake Ilirney, Chukotka (Far East Russia) to palaeoenvironmental change since ~ 51.8 ka BP

Authors :
Ulrike Herzschuh
Andrei Andreev
Lyudmila Pestryakova
Simon J. Armitage
Bernhard Diekmann
Stuart Andrew Vyse
Boris K. Biskaborn
Publication Year :
2021
Publisher :
Copernicus GmbH, 2021.

Abstract

Palaeoenvironmental reconstructions with temporal coverages extending beyond Marine Isotope Stage (MIS) three are scarce within the data sparse region of Chukotka, Far East Russia. The objective of this work was to infer palaeoenvironmental variability from a 10.76 m long, radiocarbon and OSL dated sediment core from Lake Ilirney, Chukotka (67°21´N, 168°19´E). We performed acoustic sub-bottom profiling of the lake basin and analysed high-resolution elements (XRF), organic carbon (TC, TN, TOC), grain-size, mineralogy (XRD) and partly also diatoms and pollen from the core. Our results affirm the application of XRF-based sediment-geochemical proxies as effective tracers of palaeoenvironmental variability within arctic lake systems. Our work reveals that a lake formed during MIS 3 from ca. 51.8 ka BP, following an extensive MIS 4 glaciation in the Ilirney valley. Catchment palaeoenvironmental conditions during this time likely remained cold associated with the continued presence of a catchment glacier until ca. 36.2 ka BP. Partial amelioration reflected by increased diatom, catchment vegetation and lake organic productivity and clastic sediment input from mixed sources from ca. 36.2 ka BP potentially resulted in a lake high-stand ~15 m above the present level and may represent evidence of a more productive palaeoenvironment overlapping in timing with the MIS 3 interstadial optimum. A transitional period of deteriorating palaeoenvironmental conditions occurred ca. 30- 27.9 ka BP and was superseded by periglacial-glacial conditions from ca. 27.9 ka BP, during MIS 2. Deglaciation as marked by sediment-geochemical proxies commenced ca. 20.2 ka BP. Our findings are compared with lacustrine, Yedoma and river-bluff records from across Beringia and potentially yield limited support for a marked Younger Dryas cooling in the study area.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........aab0b5a49b2d7825fd7ac64b18c85680
Full Text :
https://doi.org/10.5194/egusphere-egu21-15799