Back to Search Start Over

Study of mass and cluster flux in a pulsed gas system with enhanced nanoparticle aggregation

Authors :
Vitezslav Stranak
Christiane A. Helm
Rainer Hippler
Zdenek Hubicka
Steffen Drache
Florian Berg
Milan Tichy
Source :
Journal of Applied Physics. 116:143303
Publication Year :
2014
Publisher :
AIP Publishing, 2014.

Abstract

The paper is focused on investigation of enhanced metal (Cu) cluster growth in a source of Haberland's type using pulsed gas aggregation. The aggregation Ar gas was delivered into the cluster source in a pulse regime, which results in the formation of well pronounced aggregation pressure peaks. The pressure peaks were varied by varying the different pulse gas frequency at the same mean pressure kept for all experiments. Hence, we were able to study the effect of enhanced aggregation pressure on cluster formation. Time-resolved measurements of cluster mass distribution were performed to estimate the mass and particle flux. The paper demonstrates that pulse gas aggregation influences growth of Cu nanoparticles, i.e., cluster mass/size, mass flux, and particle flux emitted from the cluster source. It was found that cluster mass related quantities are strongly influenced by pulsed gas frequency; the highest value of mass flux appears at the most pronounced pressure peaks. On the other hand, the particle flux depends only slightly on the gas pulse frequency. The explanation based on cooling and thermalization of sputtered particles is discussed in the paper.

Details

ISSN :
10897550 and 00218979
Volume :
116
Database :
OpenAIRE
Journal :
Journal of Applied Physics
Accession number :
edsair.doi...........aac52cea125fea3e1d3e0ac857601a8f
Full Text :
https://doi.org/10.1063/1.4897234