Back to Search
Start Over
Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms
- Source :
- Publications mathématiques de l'IHÉS. 131:261-323
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- The aim of this paper is twofold. First, we introduce a new method for evaluating the multiplicity of a given discrete series representation in the space of level 1 automorphic forms of a split classical group $G$ over $\mathbf {Z}$ , and provide numerical applications in absolute rank $\leq 8$ . Second, we prove a classification result for the level one cuspidal algebraic automorphic representations of $\mathrm{GL}_{n}$ over $\mathbf {Q}$ ( $n$ arbitrary) whose motivic weight is $\leq 24$ . In both cases, a key ingredient is a classical method based on the Weil explicit formula, which allows to disprove the existence of certain level one algebraic cusp forms on $\mathrm{GL}_{n}$ , and that we push further on in this paper. We use these vanishing results to obtain an arguably “effortless” computation of the elliptic part of the geometric side of the trace formula of $G$ , for an appropriate test function. Thoses results have consequences for the computation of the dimension of the spaces of (possibly vector-valued) Siegel modular cuspforms for $\mathrm{Sp}_{2g}(\mathbf {Z})$ : we recover all the previously known cases without relying on any, and go further, by a unified and “effortless” method.
- Subjects :
- Classical group
Pure mathematics
Discrete series representation
General Mathematics
Computation
010102 general mathematics
Automorphic form
Multiplicity (mathematics)
01 natural sciences
Number theory
0103 physical sciences
Test functions for optimization
010307 mathematical physics
0101 mathematics
Algebraic number
Mathematics
Subjects
Details
- ISSN :
- 16181913 and 00738301
- Volume :
- 131
- Database :
- OpenAIRE
- Journal :
- Publications mathématiques de l'IHÉS
- Accession number :
- edsair.doi...........ab0958cc5cb1530f8d1cf3d9f66a4328
- Full Text :
- https://doi.org/10.1007/s10240-020-00115-z