Back to Search
Start Over
The Influence of Climate Model Biases on Projections of Aridity and Drought
- Source :
- Journal of Climate. 29:1269-1285
- Publication Year :
- 2016
- Publisher :
- American Meteorological Society, 2016.
-
Abstract
- Global climate models (GCMs) have biases when simulating historical climate conditions, which in turn have implications for estimating the hydrological impacts of climate change. This study examines the differences in projected changes of aridity [defined as the ratio of precipitation (P) over potential evapotranspiration (PET), or P/PET] and the Palmer drought severity index (PDSI) between raw and bias-corrected GCM output for the continental United States (CONUS). For historical simulations (1950–79) the raw GCM ensemble median has a positive precipitation bias (+24%) and negative PET bias (−7%) compared to the bias-corrected output when averaged over CONUS with the most acute biases over the interior western United States. While both raw and bias-corrected GCM ensembles project more aridity (lower P/PET) for CONUS in the late twenty-first century (2070–99), relative enhancements in aridity were found for bias-corrected data compared to the raw GCM ensemble owing to positive precipitation and negative PET biases in the raw GCM ensemble. However, the bias-corrected GCM ensemble projects less acute decreases in summer PDSI for the southwestern United States compared to the raw GCM ensemble (from 1 to 2 PDSI units higher), stemming from biases in precipitation amount and seasonality in the raw GCM ensemble. Compared to the raw GCM ensemble, bias-corrected GCM inputs not only correct for systematic errors but also can produce high-resolution projections that are useful for impact analyses. Therefore, changes in hydroclimate metrics often appear considerably different in bias-corrected output compared to raw GCM output.
- Subjects :
- Atmospheric Science
010504 meteorology & atmospheric sciences
0208 environmental biotechnology
Climate change
GCM transcription factors
02 engineering and technology
01 natural sciences
Arid
020801 environmental engineering
Over potential
Climatology
Evapotranspiration
Environmental science
Climate model
Precipitation
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 15200442 and 08948755
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- Journal of Climate
- Accession number :
- edsair.doi...........ab9da9204dbaf7c453d09e338ae0131f
- Full Text :
- https://doi.org/10.1175/jcli-d-15-0439.1