Back to Search Start Over

Interfacial assembly of binary atomic metal-Nx sites for high-performance energy devices

Authors :
Zhe Jiang
Xuerui Liu
Xiao-Zhi Liu
Shuang Huang
Ying Liu
Ze-Cheng Yao
Yun Zhang
Qing-Hua Zhang
Lin Gu
Li-Rong Zheng
Li Li
Jianan Zhang
Youjun Fan
Tang Tang
Zhongbin Zhuang
Jin-Song Hu
Source :
Nature Communications. 14
Publication Year :
2023
Publisher :
Springer Science and Business Media LLC, 2023.

Abstract

Anion-exchange membrane fuel cells and Zn–air batteries based on non-Pt group metal catalysts typically suffer from sluggish cathodic oxygen reduction. Designing advanced catalyst architectures to improve the catalyst’s oxygen reduction activity and boosting the accessible site density by increasing metal loading and site utilization are potential ways to achieve high device performances. Herein, we report an interfacial assembly strategy to achieve binary single-atomic Fe/Co-Nx with high mass loadings through constructing a nanocage structure and concentrating high-density accessible binary single-atomic Fe/Co–Nx sites in a porous shell. The prepared FeCo-NCH features metal loading with a single-atomic distribution as high as 7.9 wt% and an accessible site density of around 7.6 × 1019 sites g−1, surpassing most reported M–Nx catalysts. In anion exchange membrane fuel cells and zinc–air batteries, the FeCo-NCH material delivers peak power densities of 569.0 or 414.5 mW cm−2, 3.4 or 2.8 times higher than control devices assembled with FeCo-NC. These results suggest that the present strategy for promoting catalytic site utilization offers new possibilities for exploring efficient low-cost electrocatalysts to boost the performance of various energy devices.

Details

ISSN :
20411723
Volume :
14
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi...........ac044852ba7a3a6f049a032a67dac867
Full Text :
https://doi.org/10.1038/s41467-023-37529-2