Back to Search Start Over

Onboard Device Encapsulation With Two-Phase Cooling

Authors :
Francis A Kulacki
B. M. Shadakofsky
D. Janssen
Everett A. Wenzel
Steven J. Young
Source :
Journal of Thermal Science and Engineering Applications. 10
Publication Year :
2017
Publisher :
ASME International, 2017.

Abstract

Onboard liquid cooling of electronic devices is demonstrated with liquid delivered externally to the point of heat removal through a conformal encapsulation. The encapsulation creates a flat microgap above the integrated circuit (IC) and delivers a uniform inlet coolant flow over the device. The coolant is Novec™ 7200, and the electronics are simulated with a resistance heater on a 1:1 scale. Thermal performance is demonstrated at power densities of ∼1 kW/cm3 in the microgap. Parameters investigated are pressure drop, average device temperature, heat transfer coefficient, and coefficient of performance (COP). Nusselt numbers for gap sizes of 0.25, 0.5, and 0.75 mm are reduced to a dimensionless correlation. With low coolant inlet subcooling, two-phase heat transfer is seen at all mass flows. Device temperatures reach 95 °C for power dissipation of 50–80 W (0.67–1.08 kW/cm3) depending on coolant flow for a gap of 0.5 mm. Coefficients of performance of ∼100 to 70,000 are determined via measured pressure drop and demonstrate a low pumping penalty at the device level within the range of power and coolant flow considered. The encapsulation with microgap flow boiling provides a means for use of higher power central processing unit and graphics processing unit devices and thereby enables higher computing performance, for example, in embedded airborne computers.

Details

ISSN :
19485093 and 19485085
Volume :
10
Database :
OpenAIRE
Journal :
Journal of Thermal Science and Engineering Applications
Accession number :
edsair.doi...........ac04d5010b77131627dd0c3f53647586