Back to Search
Start Over
ByteDroid: Android Malware Detection Using Deep Learning on Bytecode Sequences
- Source :
- Communications in Computer and Information Science ISBN: 9789811534171
- Publication Year :
- 2020
- Publisher :
- Springer Singapore, 2020.
-
Abstract
- The explosive growth of the Android malware poses a great threat to users’ privacy and sensitive personal information. It is urgent to develop an effective and efficient Android malware detection system. Existing studies usually require the manual feature engineering for the feature extraction. In fact, the detection performance is heavily relied on the quality of the feature extraction. Additionally, the feature extraction becomes extremely difficult in the malware detection due to the fact that malware developers often deploy the obfuscation techniques. To address this issue, we focus on the Android malware detection using the deep neural networks without the human factors. In this paper, we propose ByteDroid, an Android malware detection scheme that processes the raw Dalvik bytecode using the deep learning. ByteDroid resizes the raw bytecode and constructs a learnable vector representation as the input to the neural network. Then, ByteDroid adopts a Convolutional Neural Networks (CNNs) to automatically extract the malware features and perform the classification. Our experiment results demonstrate that ByteDroid not only can effectively detect Android malware, but also has a great generalization performance given untrained malware. Moreover, ByteDroid maintains resilience to obfuscation techniques.
Details
- Database :
- OpenAIRE
- Journal :
- Communications in Computer and Information Science ISBN: 9789811534171
- Accession number :
- edsair.doi...........afa02ce2c4ca1e4b57712eb6648428db
- Full Text :
- https://doi.org/10.1007/978-981-15-3418-8_12