Back to Search
Start Over
Two Generalized Classes of Exponentially Dichotomous Linear Differential Systems on the Time Half-Line without Uniform Estimates for the Solution Norms. I
- Source :
- Differential Equations. 56:14-28
- Publication Year :
- 2020
- Publisher :
- Pleiades Publishing Ltd, 2020.
-
Abstract
- We consider two generalizations $$A{\cal E}_n$$ and $$W{\cal E}_n$$ of the class $${\cal E}_n$$ of linear $$n$$-dimensional exponentially dichotomous systems on the half-line. The definition of these classes differs from the classical definition of exponential dichotomy in terms of estimates for the norms of solutions in that we allow these estimates to hold starting from some time depending on the solution (the class $$A{\cal E}_n)$$ or the constant factors in the estimates to depend on the solution (the class $$W{\cal E}_n)$$. We give an equivalent definition of the class $$W{\cal E}_n$$ in the language of Bohl exponents and prove that the proper inclusions $${\cal E}_n\subset A{\cal E}_n \subset W{\cal E}_n$$ hold for $$n\geq 2$$.
- Subjects :
- 0209 industrial biotechnology
Class (set theory)
Partial differential equation
General Mathematics
Exponential dichotomy
010102 general mathematics
02 engineering and technology
Differential systems
01 natural sciences
Combinatorics
020901 industrial engineering & automation
Exponential growth
Ordinary differential equation
Half line
0101 mathematics
Constant (mathematics)
Analysis
Mathematics
Subjects
Details
- ISSN :
- 16083083 and 00122661
- Volume :
- 56
- Database :
- OpenAIRE
- Journal :
- Differential Equations
- Accession number :
- edsair.doi...........b08c37b543d39fddcaf89a9e730ad7de