Back to Search Start Over

Algebras of invariant functions on the Shilov boundaries of Siegel domains

Authors :
Anthony H. Dooley
Genkai Zhang
Source :
Proceedings of the American Mathematical Society. 126:3693-3699
Publication Year :
1998
Publisher :
American Mathematical Society (AMS), 1998.

Abstract

Let D = G / K D=G/K be a bounded symmetric domain and K / L K/L the Shilov boundary of D D . Let N \mathcal {N} be the Shilov boundary of the Siegel domain realization of G / K G/K . We consider the case when D D is the exceptional non-tube type domain of the type ( e 6 ( − 14 ) , s o ( 10 ) × s o ( 2 ) ) (\mathfrak {e}_{6(-14)}, \mathfrak {so}(10)\times \mathfrak {so}(2)) . We prove that ( N ⋊ L , L ) (\mathcal {N}\rtimes L, L) is not a Gelfand pair and thus resolve an open question of G. Carcano.

Details

ISSN :
10886826 and 00029939
Volume :
126
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society
Accession number :
edsair.doi...........b2136f875ec962346cbf06358d328752
Full Text :
https://doi.org/10.1090/s0002-9939-98-05051-5