Back to Search
Start Over
Algebras of invariant functions on the Shilov boundaries of Siegel domains
- Source :
- Proceedings of the American Mathematical Society. 126:3693-3699
- Publication Year :
- 1998
- Publisher :
- American Mathematical Society (AMS), 1998.
-
Abstract
- Let D = G / K D=G/K be a bounded symmetric domain and K / L K/L the Shilov boundary of D D . Let N \mathcal {N} be the Shilov boundary of the Siegel domain realization of G / K G/K . We consider the case when D D is the exceptional non-tube type domain of the type ( e 6 ( − 14 ) , s o ( 10 ) × s o ( 2 ) ) (\mathfrak {e}_{6(-14)}, \mathfrak {so}(10)\times \mathfrak {so}(2)) . We prove that ( N ⋊ L , L ) (\mathcal {N}\rtimes L, L) is not a Gelfand pair and thus resolve an open question of G. Carcano.
Details
- ISSN :
- 10886826 and 00029939
- Volume :
- 126
- Database :
- OpenAIRE
- Journal :
- Proceedings of the American Mathematical Society
- Accession number :
- edsair.doi...........b2136f875ec962346cbf06358d328752
- Full Text :
- https://doi.org/10.1090/s0002-9939-98-05051-5