Back to Search Start Over

Additional file 1: Table S1. of Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements

Authors :
Pfeifer, Marion
Alemu Gonsamo
Woodgate, William
Cayuela, Luis
Marshall, Andrew
Ledo, Alicia
Paine, Timothy
Marchant, Rob
Burt, Andrew
Calders, Kim
Courtney-Mustaphi, Colin
Cuni-Sanchez, Aida
Deere, Nicolas
Dereje Denu
Tanago, Jose De
Hayward, Robin
Lau, Alvaro
Macía, Manuel
Olivier, Pieter
Pellikka, Petri
Hamidu Seki
Shirima, Deo
Trevithick, Rebecca
Wedeux, Beatrice
Wheeler, Charlotte
Munishi, Pantaleo
Martin, Thomas
Mustari, Abdul
Platts, Philip
Publisher :
figshare

Abstract

Attributes of each dataset used in the analyses. Locations of each plot are provided as *.pdf file (Additional file 2). N - Number of plots used for the analyses (we excluded plots that measured at less than eight sampling points). Year - Year of field measurements. Researcher - AB, Andrew Burt; ACS, Aida Cuni-Sanchez; AG, Alemu Gonsamo; AL, Alicia Ledo; ARM, Andrew R Marshall; BW, Beatrice Wedeux; DD, Dereje Denu; DS, Deo Shirima; HS, Hamidu Seki; JGT, Jose Gonzalez de Tanago Menaca; KC, Kim Calders; LC, Luis Cayuela; LAS, Lau Alvaro Sarmiento; MJM, Manuel J Macia; MP, Marion Pfeifer; ND, Nicolas Deere; PO, Pieter Olivier; PKEP, Petri Pellikka; PJP, Philip J Platts; RT, Rebecca Trevithick; RH, Robin Hayward; RM, Robert Marchant; TP, Timothy Paine; WW, Woodgate William. Figure S1. Example maps of human population pressure, calculated from human population density grids using a range of sigma values (σ = 5, 15, 25, 50). Colours are graduated on a log base 2 scale (light colours, low pressure; dark colours, high pressure). The maps provide scope for capturing human-driven pressures at a variety of spatial scales (Platts 2012). For example, if σ = 5 then the weight given to remote populations (relative to the local population) halves over a distance of ~4 km, nearing zero by ~15 km, whereas if σ = 25 then the weight halves over a distance of ~20 km, nearing zero by ~60 km. We imposed a maximum distance of 100 km, beyond which no pressure is exerted. Figure S2. Relationships between Annual Moisture Index (AMI) and Mean Annual Precipitation (MAP) and canopy attributes LAI, fAPAR and FCover. We fitted linear, polynomial and nonlinear (nls model 1: y ~ a + b * I(x^z); nls model 2: y~a/(1 + exp.(−(b + c*x))) models. Upper panel: polynomial models fitted to LAI ~ MAP, FCover - MAP and fAPAR - MAP relationships. The polynomial (RSS 1.464) and sigmoidal growth models (RSS 1.464) produced slightly better fits to the LAI data compared to the fits produced by the linear (RSS 1.47) and exponential (RSS 1.467) models. The polynomial model produced the best fit to the FCover (RSS 24.76) and fAPAR (RSS 0.2371) data. Lower panel: nls model 2 fitted to LAI ~ MAP, FCover - MAP and fAPAR - MAP relationships. The logistic growth model produced the best fit to the LAI data (RSS 1.347), the FCover data (RSS 22.95) and the fAPAR data (RSS 0.2191). (DOC 590 kb)

Subjects

Subjects :
15. Life on land

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........b2bf805dd549b658398e832f4e95c152