Back to Search
Start Over
Correlations between atomic structure and giant magnetoresistance ratio in Co2(Fe,Mn)Si spin valves
- Source :
- Journal of Physics D: Applied Physics. 47:322003
- Publication Year :
- 2014
- Publisher :
- IOP Publishing, 2014.
-
Abstract
- We show that the magnetoresistance of Co2FexMn1?xSi-based spin valves, over 70% at low temperature, is directly related to the structural ordering in the electrodes and at the electrodes/spacer (Co2FexMn1?xSi/Ag) interfaces. Aberration-corrected atomic resolution Z-contrast scanning transmission electron microscopy of device structures reveals that annealing at 350??C and 500??C creates partial B2/L21 and fully L21 ordering of electrodes, respectively. Interface structural studies show that the Ag/Co2FexMn1?xSi interface is more ordered compared to the Co2FexMn1?xSi/Ag interface. The release of interface strain is mediated by misfit dislocations that localize the strain around the dislocation cores, and the effect of this strain is assessed by first principles electronic structure calculations. This study suggests that by improving the atomic ordering and strain at the interfaces, further enhancement of the magnetoresistance of CFMS-based current-perpendicular-to-plane spin valves is possible.
- Subjects :
- Materials science
Acoustics and Ultrasonics
Magnetoresistance
Condensed matter physics
Annealing (metallurgy)
Giant magnetoresistance
Electronic structure
Condensed Matter Physics
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Scanning transmission electron microscopy
Electrode
Dislocation
Thin film
Subjects
Details
- ISSN :
- 13616463 and 00223727
- Volume :
- 47
- Database :
- OpenAIRE
- Journal :
- Journal of Physics D: Applied Physics
- Accession number :
- edsair.doi...........b3aeacbd21842a376e79898547a668e0
- Full Text :
- https://doi.org/10.1088/0022-3727/47/32/322003