Back to Search Start Over

Poly(ionic liquid)-Gated CuCo2S4 for pH-/Thermo-Triggered Drug Release and Photoacoustic Imaging

Authors :
Yang Shu
Shao-Ying Fan
Wen-Xin Zhang
Jian-Hua Wang
Ya-Nan Hao
Wei Chen
Aliasger Kapasi
Source :
ACS Applied Materials & Interfaces. 12:9000-9007
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

A novel hybrid drug nanocarrier is developed with CuCo2S4 nanoparticles as the core to be encapsulated by poly(ionic liquid) (PIL), that is, poly(tetrabutylphosphonium styrenesulfonate) (P[P4,4,4,4][SS]), as the shell. Doxorubicin (DOX) is loaded onto the PIL shell via electrostatic attraction involving amine in DOX and styrenesulfonate in PIL. pH- and thermal-responsive characteristics of P[P4,4,4,4][SS] endow the multifunctional hybrid nanocarrier system DOX-CuCo2S4@PIL with sensitive dual-stimuli-triggered drug release behaviors. The CuCo2S4 core converts near-infrared (NIR) irradiation into thermal energy to trigger the shrinkage of the PIL shell, which subsequently promotes drug release, and the pH-responsive release of DOX involves pH-sensitive electrostatic interaction of the PIL shell with DOX. A favorable controlled release of 90.5% is achieved under pH/thermo dual stimuli. In vitro experiments with MCF-7 cells well demonstrated that the drug release is controlled by the acidic intracellular environment with NIR irradiation. The CuCo2S4 core also serves as a photoacoustic (PA) imaging contrast agent, as demonstrated by in vivo treatment of the MCF-7-carrying mice.

Details

ISSN :
19448252 and 19448244
Volume :
12
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi...........b3eec465c63a6185f7731793a5be2ed2