Back to Search
Start Over
A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH4)2 within Reduced Graphene Oxide
- Source :
- ACS Nano. 14:1745-1756
- Publication Year :
- 2020
- Publisher :
- American Chemical Society (ACS), 2020.
-
Abstract
- Magnesium borohydride (Mg(BH4)2, abbreviated here MBH) has received tremendous attention as a promising onboard hydrogen storage medium due to its excellent gravimetric and volumetric hydrogen storage capacities. While the polymorphs of MBH-alpha (α), beta (β), and gamma (γ)-have distinct properties, their synthetic homogeneity can be difficult to control, mainly due to their structural complexity and similar thermodynamic properties. Here, we describe an effective approach for obtaining pure polymorphic phases of MBH nanomaterials within a reduced graphene oxide support (abbreviated MBHg) under mild conditions (60-190 °C under mild vacuum, 2 Torr), starting from two distinct samples initially dried under Ar and vacuum. Specifically, we selectively synthesize the thermodynamically stable α phase and metastable β phase from the γ-phase within the temperature range of 150-180 °C. The relevant underlying phase evolution mechanism is elucidated by theoretical thermodynamics and kinetic nucleation modeling. The resulting MBHg composites exhibit structural stability, resistance to oxidation, and partially reversible formation of diverse [BH4]- species during de- and rehydrogenation processes, rendering them intriguing candidates for further optimization toward hydrogen storage applications.
- Subjects :
- Materials science
Graphene
General Engineering
Nucleation
Oxide
General Physics and Astronomy
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
Borohydride
01 natural sciences
Nanocrystalline material
0104 chemical sciences
law.invention
Nanomaterials
chemistry.chemical_compound
Hydrogen storage
chemistry
Chemical engineering
law
Gravimetric analysis
General Materials Science
0210 nano-technology
Subjects
Details
- ISSN :
- 1936086X and 19360851
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- ACS Nano
- Accession number :
- edsair.doi...........b4c3ba052e33f4d7d9fe58ad35931d44
- Full Text :
- https://doi.org/10.1021/acsnano.9b07454