Back to Search Start Over

Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement

Authors :
Hywel Rhys Thomas
Xiaobo Wang
Caojian Jiang
Keting Gui
Jie Zhou
Jia Wang
Source :
Korean Journal of Chemical Engineering. 36:1991-1999
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Mn-Ce-Ti catalysts were prepared by different precursors (including manganese nitrate, manganese acetate, and manganese chloride) and used for selective catalytic reduction (SCR) of NO with ammonia. The relationships among the structure, physicochemical properties, and catalytic activity were explored by N2 adsorption/desorption, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microprobe (SEM) and energy dispersive spectroscopy (EDS) techniques. The results show that the different Mn precursors play important roles in the catalytic activity. The Mn-Ce-Ti(N) catalyst synthesized by manganese nitrate precursor exhibits the best catalytic activity, while the Mn-Ce-Ti(C) and Mn-Ce-Ti(Cl) catalyst prepared by manganese acetate and manganese chloride, respectively, exhibit relatively low catalytic activity. The manganese nitrate precursor could promote the specific surface area and redox ability, enhance the amounts of Bronsted and Lewis acid sites, and enrich the surface active species such as Mn4+, Ce3+ and surface chemisorbed oxygen of the catalyst, all of which will contribute to the SCR performance. Moreover, the Mn-Ce-Ti(N) catalyst possesses highly dispersed and uniform surface active species, which will result in the optimal physicochemical properties and superior catalytic performance.

Details

ISSN :
19757220 and 02561115
Volume :
36
Database :
OpenAIRE
Journal :
Korean Journal of Chemical Engineering
Accession number :
edsair.doi...........b500e37f63ccfec2e72d3992638481b4
Full Text :
https://doi.org/10.1007/s11814-019-0410-z