Back to Search Start Over

An extended navigation framework for autonomous mobile robot in dynamic environments using reinforcement learning algorithm

Authors :
Trung Dung Ngo
Nguyen Tran Hiep
Xuan-Tung Truong
Nguyen Van Dinh
Pham Trung Dung
Lan Anh Nguyen
Hong Toan Dinh
Nguyen Hong Viet
Source :
2017 International Conference on System Science and Engineering (ICSSE).
Publication Year :
2017
Publisher :
IEEE, 2017.

Abstract

In this paper, we propose an extended navigation framework for autonomous mobile robots in dynamic environments using a reinforcement learning algorithm. The main idea of the proposed algorithm is to provide the mobile robots the relative position and motion of the surrounding objects to the robots, and the safety constraints such as minimum distance from the robots to the obstacles, and a learning model. We then distribute the mobile robots into a dynamic environment. The mobile robots will automatically learn to adapt to the environment by their own experienced through the trial-and-error interaction with the surrounding environment. When the learning phase is completed, the mobile robots equipped with our proposed framework are able to navigate autonomously and safely in the dynamic environment. The simulation results in a simulated environment shows that, our proposed navigation framework is capable of driving the mobile robots to avoid dynamic obstacles and catch up dynamic targets, providing the safety for the surrounding objects and the mobile robots.

Details

Database :
OpenAIRE
Journal :
2017 International Conference on System Science and Engineering (ICSSE)
Accession number :
edsair.doi...........b5ba48db0bc737f62d3adac3c0d528aa
Full Text :
https://doi.org/10.1109/icsse.2017.8030892