Back to Search Start Over

Magnetic Anisotropy Induced by Orbital Occupation States in La0.67Sr0.33MnO3 Films

Authors :
Richeng Yu
Yuan Yao
Yuansha Chen
Weipeng Wang
Junjie Li
Jirong Sun
Xi Shen
Huaixiang Wang
Jinghua Song
Source :
Chinese Physics Letters. 38:087502
Publication Year :
2021
Publisher :
IOP Publishing, 2021.

Abstract

Interface engineering is an effective and feasible method to regulate the magnetic anisotropy of films by altering interfacial states between films. Using the technique of pulsed laser deposition, we prepared La0.67Sr0.33MnO3 (LSMO) and La0.67Sr0.33MnO3/SrCoO2.5 (LSMO/SCO) films on (110)-oriented La0.3Sr0.7Al0.65Ta0.35O3 substrates. By covering the SCO film above the LSMO film, we transformed the easy magnetization axis of LSMO from the [001] axis to the [ 1 1 ¯ 0 ] axis in the film plane. Based on statistical analyses, we find that the corresponding Mn–Mn ionic distances are different in the two types of LSMO films, causing different distortions of Mn–O octahedron in LSMO. In addition, it also induces diverse electronic occupation states in Mn3+ ions. The e g electron of Mn3+ occupies 3z 2 – r 2 and x 2 – y 2 orbitals in the LSMO and LSMO/SCO, respectively. We conclude that the electronic spin reorientation leads to the transformation of the easy magnetization axis in the LSMO films.

Details

ISSN :
17413540 and 0256307X
Volume :
38
Database :
OpenAIRE
Journal :
Chinese Physics Letters
Accession number :
edsair.doi...........b5ccedc5fa0d33d94c8fd7670890121b
Full Text :
https://doi.org/10.1088/0256-307x/38/8/087502