Back to Search Start Over

Exploratory cuckoo search for solving single-objective optimization problems

Authors :
Malek Barhoush
Bilal H. Abed-alguni
Noor Aldeen Alawad
Rafat Hammad
Source :
Soft Computing. 25:10167-10180
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

The cuckoo search (CS) algorithm is an effective optimization algorithm, but it is prone to stagnation in suboptimality because of some limitations in its exploration mechanisms. This paper introduces a variation of CS called exploratory CS (ECS), which incorporates three modifications to the original CS algorithm to enhance its exploration capabilities. First, ECS uses a special type of opposition-based learning called refraction learning to improve the ability of CS to jump out of suboptimality. Second, ECS uses the Gaussian perturbation to optimize the worst candidate solutions in the population before the discard step in CS. Third, in addition to the Levy flight mutation method used in CS, ECS employs two mutation methods, namely highly disruptive polynomial mutation and Jaya mutation, to generate new improved candidate solutions. A set of 14 widely used benchmark functions was used to evaluate and compare ECS to three variations of CS:CS with Levy flight (CS), CS with highly disruptive polynomial mutation (CS10) and CS with pitch adjustment mutation (CS11). The overall experimental and statistical results indicate that ECS exhibits better performance than all of the tested CS variations. Besides, the single-objective IEEE CEC 2014 functions were used to evaluate and compare the performance of ECS to six well-known swarm optimization algorithms: CS with Levy flight, Grey wolf optimizer (GWO), distributed Grey wolf optimizer (DGWO), distributed adaptive differential evolution with linear population size reduction evolution (L-SHADE), memory-based hybrid Dragonfly algorithm and Fireworks algorithm with differential mutation. Interestingly, the results indicate that ECS provides competitive performance compared to the tested six well-known swarm optimization algorithms.

Details

ISSN :
14337479 and 14327643
Volume :
25
Database :
OpenAIRE
Journal :
Soft Computing
Accession number :
edsair.doi...........b78bb698fda7824eebd850d98129c521
Full Text :
https://doi.org/10.1007/s00500-021-05939-3