Back to Search
Start Over
Differentiation Induction In Acute Myeloid Leukemia Using Site-Specific DNA-Targeting
- Source :
- Blood. 122:3940-3940
- Publication Year :
- 2013
- Publisher :
- American Society of Hematology, 2013.
-
Abstract
- Hoxa9 and Meis1 are overexpressed in >70% of acute myeloid leukemia (AML) and associated with poor prognosis and survival. Hoxa9 and Meis1 interact with DNA and PBX to achieve transcription of differentiation-blocking genes. We tested transcriptional repression at Hoxa9-PBX-Meis1 genomic binding sites to induce differentiation in a model of human AML We designed a DNA-recognition strategy based on the known structure of the Hoxa9-PBX-DNA complex by fusing the DNA binding helices of Hoxa9 and PBX to create concise homeodomain fusion proteins that target the Hoxa9-PBX DNA recognition sequence. To confer transcription-repressing properties to the proteins, we attached a transcriptional repressor (sin3 interacting) domain and ectopically expressed this protein in Hoxa9-Meis1 immortalized murine progenitors. Introduction of this transcription repressor protein significantly enabled cell differentiation versus control (51.2% Mac-1high Gr-1high cells versus 11.3% for control). Multiple gene transcripts indicative of differentiation, such as GCSFR, myeloperoxidase, neutrophil elastase, and the calcium binding protein, S100A8, were also elevated in repressor-expressing cells. Furthermore, direct transcriptional targets of Hoxa9 (e.g. SOX2, CD34, FOXP1, FLT3R, DNAJC10) were down regulated in repressor-expressing cells. Importantly, a mutant repressor lacking the DNA-interacting amino acids did not affect transcription of Hoxa9 targets, demonstrating on-target specificity. Repressor-expressing cells also exhibited lower surface expression of c-Kit and Flt3 receptors and when transplanted into mice resulted in a significant increase in disease latency with a 94 day median latency versus 62 day latency for the control group (p value = 0.002). Our results demonstrate that site-specific DNA-targeting using homeodomain fusion proteins can enable AML cell differentiation and significantly increase disease latency. Disclosures: Scadden: Fate Therapeutics: Consultancy, Equity Ownership.
Details
- ISSN :
- 15280020 and 00064971
- Volume :
- 122
- Database :
- OpenAIRE
- Journal :
- Blood
- Accession number :
- edsair.doi...........b7eb31d56df050d3575abd6cd6aedc5b
- Full Text :
- https://doi.org/10.1182/blood.v122.21.3940.3940