Back to Search
Start Over
Learning from existing photovoltaic technologies to identify alternative perovskite module designs
- Source :
- Energy & Environmental Science. 13:3393-3403
- Publication Year :
- 2020
- Publisher :
- Royal Society of Chemistry (RSC), 2020.
-
Abstract
- Perovskite solar cells have now become the most efficient of all multicrystalline thin film photovoltaic technologies, reaching 25.2% in 2019. This outstanding figure of merit has only been achieved on small lab-scale devices, with significantly lower performance when processed on larger more industrially relevant substrate sizes. Perovskite modules, connecting several smaller area cells together, are commonly demonstrated with a superstrate monolithic interconnection method. However, several other module designs exist and remain largely unexplored by the perovskite community. In this work, we review and highlight those alternatives and discuss their advantages and limitations. We propose that a singulated substrate-oriented module design, using metallic substrates, could provide a quicker path to seeing highly efficient, lightweight, and flexible perovskite modules on the market, while mitigating near-term technical risks. As an experimental starting-point towards this design, we demonstrate a substrate-oriented all-perovskite 2-terminal tandem with 18% efficiency.
Details
- ISSN :
- 17545706 and 17545692
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Energy & Environmental Science
- Accession number :
- edsair.doi...........b842f02e10349e727f6ce8c084c210a1
- Full Text :
- https://doi.org/10.1039/d0ee01923b