Back to Search Start Over

Information theory of D-dimensional hydrogenic systems: Application to circular and Rydberg states

Authors :
Rafael J. Yáñez
Andrei Martínez-Finkelshtein
Sheila López-Rosa
Jesús S. Dehesa
Source :
International Journal of Quantum Chemistry. 110:1529-1548
Publication Year :
2009
Publisher :
Wiley, 2009.

Abstract

The analytic information theory of quantum systems includes the exact determination of their spatial extension or multidimensional spreading in both position and momentum spaces by means of the familiar variance and its generalization, the power and logarithmic moments, and, more appropriately, the Shannon entropy and the Fisher information. These complementary uncertainty measures have a global or local character, respectively, because they are power-like (variance, moments), logarithmic (Shannon) and gradient (Fisher) functionals of the corresponding probability distribution. Here we explicitly discuss all these spreading measures (and their associated uncertainty relations) in both position and momentum for the main prototype in D-dimensional physics, the hydrogenic system, directly in terms of the dimensionality and the hyperquantum numbers which characterize the involved states. Then, we analyze in detail such measures for s-states, circular states (i.e., single-electron states of highest angular momenta allowed within an electronic manifold characterized by a given principal hyperquantum number), and Rydberg states (i.e., states with large radial hyperquantum numbers n). © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

Details

ISSN :
00207608
Volume :
110
Database :
OpenAIRE
Journal :
International Journal of Quantum Chemistry
Accession number :
edsair.doi...........b952df5a8e547e9bc76e46d2c6ea83c4