Back to Search Start Over

Convergence of Algebraic multigrid methods for symmetric positive definite matrices with weak diagonal dominance

Authors :
Weizhang Huang
Source :
Applied Mathematics and Computation. 46:145-164
Publication Year :
1991
Publisher :
Elsevier BV, 1991.

Abstract

For symmetric positive definite matrices with weak diagonal dominance, the algebraic sense of smooth errors is discussed and convergence of algebraic multigrid (AMG) methods is proved. It is found that the results of AMG for symmetric positive definite M-matrices with weak diagonal dominance also hold without the M-matrix assumption. The key result is the new formula x^[email protected]?ia"i"[email protected]?j [email protected]"[email protected]"j|a"i"j|+|a"j"i|x^2"[email protected][email protected]?j [email protected]"[email protected]"j|a"i"j|x"[email protected]"[email protected]"ia"i"j|a"i"j|x"j^2.

Details

ISSN :
00963003
Volume :
46
Database :
OpenAIRE
Journal :
Applied Mathematics and Computation
Accession number :
edsair.doi...........bbae81b040470a40519f9c7bf0059cc2
Full Text :
https://doi.org/10.1016/0096-3003(91)90022-f