Back to Search
Start Over
Convergence of Algebraic multigrid methods for symmetric positive definite matrices with weak diagonal dominance
- Source :
- Applied Mathematics and Computation. 46:145-164
- Publication Year :
- 1991
- Publisher :
- Elsevier BV, 1991.
-
Abstract
- For symmetric positive definite matrices with weak diagonal dominance, the algebraic sense of smooth errors is discussed and convergence of algebraic multigrid (AMG) methods is proved. It is found that the results of AMG for symmetric positive definite M-matrices with weak diagonal dominance also hold without the M-matrix assumption. The key result is the new formula x^[email protected]?ia"i"[email protected]?j [email protected]"[email protected]"j|a"i"j|+|a"j"i|x^2"[email protected][email protected]?j [email protected]"[email protected]"j|a"i"j|x"[email protected]"[email protected]"ia"i"j|a"i"j|x"j^2.
- Subjects :
- Generic property
InformationSystems_INFORMATIONSYSTEMSAPPLICATIONS
Applied Mathematics
ComputingMilieux_LEGALASPECTSOFCOMPUTING
Positive-definite matrix
Combinatorics
Computational Mathematics
Multigrid method
Convergence (routing)
Symmetric matrix
Algebraic number
M-matrix
Diagonally dominant matrix
Mathematics
Subjects
Details
- ISSN :
- 00963003
- Volume :
- 46
- Database :
- OpenAIRE
- Journal :
- Applied Mathematics and Computation
- Accession number :
- edsair.doi...........bbae81b040470a40519f9c7bf0059cc2
- Full Text :
- https://doi.org/10.1016/0096-3003(91)90022-f