Back to Search Start Over

Quinoline- and isoquinoline-derived ligand design on TQEN (N,N,N′,N′-tetrakis(2-quinolylmethyl)ethylenediamine) platform for fluorescent sensing of specific metal ions and phosphate species

Authors :
Yuji Mikata
Source :
Dalton Transactions. 49:17494-17504
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

Rational molecular structure alterations of TQEN (N,N,N',N'-tetrakis(2-quinolylmethyl)ethylenediamine) produced variable fluorescent sensors for specific metal ions and phosphate species. Utilization of methoxy-substituted quinoline and isoquinoline chromophores, conformational restriction and multidentate coordination structure allow discrimination between Zn2+ and Cd2+. Pyrophosphate (P2O74-, PPi) and phosphate (PO43-) also are selectively detected with dinuclear Zn2+ complexes of tetrakisquinoline-based ligands. Differential stability and structure of the metal complexes, as well as resulting fluorescence enhancement mechanism, such as intramolecular excimer formation via change in coordination geometry, play key roles in the discrimination of target ions.

Details

ISSN :
14779234 and 14779226
Volume :
49
Database :
OpenAIRE
Journal :
Dalton Transactions
Accession number :
edsair.doi...........bc6417838a349905f0f789842c267742
Full Text :
https://doi.org/10.1039/d0dt03024d