Back to Search Start Over

Approximation in weighted Bergman spaces and Hankel operators on strongly pseudoconvex domains

Authors :
Jinshou Gao
Zhangjian Hu
Source :
Mathematische Zeitschrift. 297:1483-1505
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Suppose D is a bounded strongly pseudoconvex domain in $${{\mathbb {C}}}^n$$ with smooth boundary, and let $$\rho $$ be its defining function. For $$1< p-1$$ , we show that the weighted Bergman projection $$P_\alpha $$ is bounded on $$L^p(D, |\rho |^\alpha dV)$$ . With non-isotropic estimates for $$\overline{\partial }$$ and Stein’s theorem on non-tangential maximal operators, we prove that bounded holomorphic functions are dense in the weighted Bergman space $$A^p(D, |\rho |^\alpha dV)$$ , and hence Hankel operators can be well defined on these spaces. For all $$1

Details

ISSN :
14321823 and 00255874
Volume :
297
Database :
OpenAIRE
Journal :
Mathematische Zeitschrift
Accession number :
edsair.doi...........bcaa96679b03f183f6c4fdfca10950db
Full Text :
https://doi.org/10.1007/s00209-020-02566-w