Back to Search
Start Over
Approximation in weighted Bergman spaces and Hankel operators on strongly pseudoconvex domains
- Source :
- Mathematische Zeitschrift. 297:1483-1505
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Suppose D is a bounded strongly pseudoconvex domain in $${{\mathbb {C}}}^n$$ with smooth boundary, and let $$\rho $$ be its defining function. For $$1< p-1$$ , we show that the weighted Bergman projection $$P_\alpha $$ is bounded on $$L^p(D, |\rho |^\alpha dV)$$ . With non-isotropic estimates for $$\overline{\partial }$$ and Stein’s theorem on non-tangential maximal operators, we prove that bounded holomorphic functions are dense in the weighted Bergman space $$A^p(D, |\rho |^\alpha dV)$$ , and hence Hankel operators can be well defined on these spaces. For all $$1
- Subjects :
- Mathematics::Complex Variables
General Mathematics
010102 general mathematics
Holomorphic function
Boundary (topology)
Function (mathematics)
01 natural sciences
Domain (mathematical analysis)
Combinatorics
Projection (relational algebra)
Bergman space
Bounded function
0103 physical sciences
Standard probability space
010307 mathematical physics
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 14321823 and 00255874
- Volume :
- 297
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift
- Accession number :
- edsair.doi...........bcaa96679b03f183f6c4fdfca10950db
- Full Text :
- https://doi.org/10.1007/s00209-020-02566-w