Back to Search
Start Over
On the exponential diophantine equation $x^y+y^x=z^z$
- Source :
- Czechoslovak Mathematical Journal. 67:645-653
- Publication Year :
- 2017
- Publisher :
- Institute of Mathematics, Czech Academy of Sciences, 2017.
-
Abstract
- For any positive integer D which is not a square, let (u 1, v 1) be the least positive integer solution of the Pell equation u 2 − Dv 2 = 1, and let h(4D) denote the class number of binary quadratic primitive forms of discriminant 4D. If D satisfies 2 l D and v 1h(4D) ≡ 0 (mod D), then D is called a singular number. In this paper, we prove that if (x, y, z) is a positive integer solution of the equation x y + y x = z z with 2 | z, then maximum max{x, y, z}
Details
- Volume :
- 67
- Database :
- OpenAIRE
- Journal :
- Czechoslovak Mathematical Journal
- Accession number :
- edsair.doi...........bce05d01b955046b66993f2833caf1bf
- Full Text :
- https://doi.org/10.21136/cmj.2017.0645-15