Back to Search Start Over

Domain decomposition in the GPU-accelerated Shift Monte Carlo code

Authors :
Steven P. Hamilton
Katherine Royston
Thomas M. Evans
Elliott D. Biondo
Source :
Annals of Nuclear Energy. 166:108687
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

The GPU solver within the Shift continuous-energy Monte Carlo neutron transport code has been extended to provide domain decomposition in addition to domain replication to enable the solution of problems with memory requirements exceeding the capacity of a single GPU. The strategy follows the Multiple Set, Overlapping Domain (MSOD) approach that is used in Shift’s CPU solver and integrates into the event-based algorithm used for Shift’s GPU solver. Furthermore, the ability to assign processors to spatial domains non-uniformly has been maintained. Two different approaches for communicating particle data between domains are considered, and multiple criteria for load balancing problems have been investigated. Numerical results are presented for both fresh and depleted small modular nuclear reactor (SMR) cores. A parallel efficiency of approximately 80% was achieved with up to 16 spatial domains measured relative to full domain replication. A scaling study on the Summit supercomputer demonstrates a weak scaling parallel efficiency of over 90% on over 24000 GPUs.

Details

ISSN :
03064549
Volume :
166
Database :
OpenAIRE
Journal :
Annals of Nuclear Energy
Accession number :
edsair.doi...........bce4c2f870d3b627d49ecd1226f4ef52
Full Text :
https://doi.org/10.1016/j.anucene.2021.108687