Back to Search Start Over

Harnack inequalities for quasi-minima of variational integrals

Authors :
E. Di Benedetto
Neil S. Trudinger
Source :
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 1:295-308
Publication Year :
1984
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 1984.

Abstract

In his fundamental work on linear elliptic equations, De Giorgi established local bounds and Holder estimates for functions satisfying certain integral inequalities. The main result of this paper is that the Harnack inequality can be proved directly for functions in the De Giorgi classes. This implies that every non-negative Q-minimum (in the terminology of Giaquinta and Giusti) satisfies a Harnack inequality.

Details

ISSN :
18731430 and 02941449
Volume :
1
Database :
OpenAIRE
Journal :
Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Accession number :
edsair.doi...........bd3c6b5e0fb40979f9e87ba169e13d0b
Full Text :
https://doi.org/10.1016/s0294-1449(16)30424-3