Back to Search
Start Over
Harnack inequalities for quasi-minima of variational integrals
- Source :
- Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 1:295-308
- Publication Year :
- 1984
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 1984.
-
Abstract
- In his fundamental work on linear elliptic equations, De Giorgi established local bounds and Holder estimates for functions satisfying certain integral inequalities. The main result of this paper is that the Harnack inequality can be proved directly for functions in the De Giorgi classes. This implies that every non-negative Q-minimum (in the terminology of Giaquinta and Giusti) satisfies a Harnack inequality.
Details
- ISSN :
- 18731430 and 02941449
- Volume :
- 1
- Database :
- OpenAIRE
- Journal :
- Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Accession number :
- edsair.doi...........bd3c6b5e0fb40979f9e87ba169e13d0b
- Full Text :
- https://doi.org/10.1016/s0294-1449(16)30424-3