Back to Search
Start Over
An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier–Stokes Equations
- Source :
- Journal of Computational Physics. 133:84-101
- Publication Year :
- 1997
- Publisher :
- Elsevier BV, 1997.
-
Abstract
- Efficient solution of the Navier?Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We examine several preconditioners for the consistent L2Poisson operator arising in the PN? PN?2spectral element formulation of the incompressible Navier?Stokes equations. We develop a finite element-based additive Schwarz preconditioner using overlapping subdomains plus a coarse grid projection operator which is applied directly to the pressure on the interior Gauss points. For large two-dimensional problems this approach can yield as much as a fivefold reduction in simulation time over previously employed methods based upon deflation.
- Subjects :
- Numerical Analysis
Physics and Astronomy (miscellaneous)
Preconditioner
Applied Mathematics
Operator (physics)
Mathematical analysis
Linear system
Context (language use)
Finite element method
Computer Science Applications
Physics::Fluid Dynamics
Computational Mathematics
Incompressible flow
Modeling and Simulation
Schwarz alternating method
Navier–Stokes equations
Mathematics
Subjects
Details
- ISSN :
- 00219991
- Volume :
- 133
- Database :
- OpenAIRE
- Journal :
- Journal of Computational Physics
- Accession number :
- edsair.doi...........bdb89d66c7da74e3880dfe4da15e0b81
- Full Text :
- https://doi.org/10.1006/jcph.1997.5651