Back to Search Start Over

Defect-rich N-doped CeO2 supported by N-doped graphene as a metal-free plasmonic hydrogen evolution photocatalyst

Authors :
Jin-Kyu Yang
Kang Bin Bae
Sang Woo Ki
Dung Van Dao
Seoin Back
Thuy T.D. Nguyen
Yeong Hoon Cho
Hoki Son
Thanh Duc Le
Hyun Dong Jung
Yeon-Tae Yu
In Hwan Lee
Source :
Journal of Materials Chemistry A. 9:10217-10230
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

Heteroatom doping into metal oxides advantageously modulates optoelectronic properties and provides promising possibilities for efficient light-to-energy conversion. Herein, nitrogen-doped ceria (N-CeO2) nanoparticles are prepared and then coupled with nitrogen-doped graphene (N-Gr) to create an active and long-lasting N-CeO2/N-Gr heterocatalyst. Optoelectronic features of N-doping materials (e.g., plasmon) are significantly improved toward the visible-light region, particularly for 3.9% N-CeO2/N-Gr nanocomposites. Namely, the 3.9% N-CeO2 possesses numerous catalytic active defects (N states, oxygen vacancy, and Ce3+ species), leading to a narrow bandgap energy and to the improved plasmonic properties of the ceria host, while the N-Gr preferably serves as an electron scavenger to collect plasmon-generated hot electrons migrating from 3.9% N-CeO2 to drive photocatalytic reactions under the irradiation of visible-light. Resultantly, the 3.9% N-CeO2/N-Gr photocatalyst delivers an impressive hydrogen evolution reaction (HER) rate of 3.7 μmol mgcat−1 h−1 under visible-light, which is 2.0- and 8.2-fold greater than those obtained from 3.9% N-CeO2 and CeO2 ones, respectively. Additionally, the combination of 3.9% N-CeO2 and N-Gr synergistically produces a long-lasting plasmonic HER photocatalyst system. Metal-free plasmonic N-doped oxides supported by N-doped graphene pave a promising pathway for efficient light-to-hydrogen fuel production accordingly.

Details

ISSN :
20507496 and 20507488
Volume :
9
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........be2e37c23fcb5b08cc47f0892fc3ef03