Back to Search Start Over

Carbon nanotube thermoelectric devices by direct printing: Toward wearable energy converters

Authors :
Naoki Furukawa
Antonio J. Ricco
Hye Ryoung Lee
Yi Cui
Yoshio Nishi
Eric Pop
Source :
Applied Physics Letters. 118:173901
Publication Year :
2021
Publisher :
AIP Publishing, 2021.

Abstract

Thermoelectric devices convert thermal energy to electrical energy and are particularly well-suited for energy harvesting from waste heat. Even as the number of electronic devices used in daily life proliferates, technical advances diminish the average power such devices require to perform a given function. Localized thermal gradients that abound in our living environments, despite having modest energy densities, are therefore becoming increasingly viable and attractive to power such devices. With this motivation, we report the design, fabrication, and characterization of single-wall carbon nanotube thermoelectric devices (CNT-TDs) on flexible polyimide substrates as a basis for wearable energy converters. Our aqueous-solution-based film fabrication process could enable readily scalable, low-cost TDs; here, we demonstrate CNT-hydroxypropyl cellulose (HPC) composite thermoelectric films by aerosol jet printing. The electrical conductivity of the composite films is controlled through the number of CNT/HPC layers printed in combination with control of the annealing conditions. The HPC initially disperses the CNTs in deionized water, the greenest of solvents, and is subsequently partially eliminated from the film by annealing, with concomitant morphological changes that we characterized by TEM. HPC removal is key to obtaining good electrical conductivity (0.94 to 1.10 × 105 S/m) and Seebeck coefficients (36 to 43 μV/K). We also report a power factor of 208 μW m−1 K−2 for a CNT-TD composed of 15 layers of CNT/HPC, promising performance for CNT-based flexible TDs that are deposited from aqueous solution, stable in air, and require no additional doping or sorting processes.

Details

ISSN :
10773118 and 00036951
Volume :
118
Database :
OpenAIRE
Journal :
Applied Physics Letters
Accession number :
edsair.doi...........bfe002bff428c99041705f7971825496
Full Text :
https://doi.org/10.1063/5.0042349