Back to Search Start Over

Thermal conductivity of high purity synthetic single crystal diamonds

Authors :
V. G. Ralchenko
A. V. Inyushkin
Alexander N. Taldenkov
Andrey Bolshakov
A. V. Koliadin
A. N. Katrusha
Source :
Physical Review B. 97
Publication Year :
2018
Publisher :
American Physical Society (APS), 2018.

Abstract

Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies $\ensuremath{\kappa}(T)$ and high values of thermal conductivity, up to 24 $\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 $\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$, the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental $\ensuremath{\kappa}(T)$ data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity ($g24$ $\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$) for the defect-free diamond with the natural isotopic abundance at room temperature.

Details

ISSN :
24699969 and 24699950
Volume :
97
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi...........c074b1019dc23ff385ab3a12fbff6db6
Full Text :
https://doi.org/10.1103/physrevb.97.144305