Back to Search
Start Over
Molecular Mechanism for Hepatic Glycerolipid Partitioning of n-6/n-3 Fatty Acid Ratio in an Obese Animal Biomodels
- Source :
- International Journal of Molecular Sciences. 24:1576
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- The n-6/n-3 metabolic pathway associated with hepatic glycerolipid portioning plays a key role in preventing obesity. In this nutrition metabolism study, we used in vivo monitoring techniques with 40 obese male Sprague-Dawley strain rats attached with jugular-vein cannula after obesity was induced by a high-fat diet to determine the molecular mechanism associated with hepatic glycerolipid partitioning involving the n-6/n-3 metabolic pathway. Rats were randomly assigned to four groups (10 animals per group), including one control group (CON, n-6/n-3 of 71:1) and three treatment groups (n-6/n-3 of 4:1, 15:1 and 30:1). They were fed with experimental diets for 60 days. Incorporation rates of [14C]-labeling lipid into glycerolipid in the liver were 28.87–37.03% in treatment groups fed with diets containing an n-6/n-3 ratio of 4:1, 15:1 and 30:1, which were significantly (p < 0.05) lower than that in the CON (40.01%). However, 14CO2 emission % of absorbed dose showed the opposite trend. It was significantly (p < 0.05) higher in a treatment groups (n-6/n-3 of 4:1, 15:1 and 30:1, 30.35–45.08%) than in CON (27.71%). Regarding the metabolic distribution of glycerolipid to blood from livers, phospholipid/total glycerolipid (%) was significantly (p < 0.05) lower in CON at 11.04% than in treatment groups at 18.15% to 25.15%. Moreover, 14CO2/[14C]-total glycerolipid (%) was significantly (p < 0.05) higher in treatment groups at 44.16–78.50% than in CON at 39.50%. Metabolic distribution of fatty acyl moieties flux for oxidation and glycerolipid synthesis in the liver were significantly (p < 0.05) better in order of 4:1 > 15:1 > 30:1 than in the CON. Our data demonstrate that n-6/n-3 of 4:1 could help prevent obesity by controlling the mechanism of hepatic partitioning through oxidation and esterification of glycerolipid in an obese animal biomodel.
Details
- ISSN :
- 14220067
- Volume :
- 24
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Sciences
- Accession number :
- edsair.doi...........c0bb6d7b1a5d175d195582ff4486f04e
- Full Text :
- https://doi.org/10.3390/ijms24021576