Back to Search Start Over

A Novel Grey Wolf Optimization Based Combined Feature Selection Method

Authors :
Zhaoyan Hu
Haikuan Wang
Zhile Yang
Yuanjun Guo
Source :
Communications in Computer and Information Science ISBN: 9789811534249, BIC-TA (1)
Publication Year :
2020
Publisher :
Springer Singapore, 2020.

Abstract

In data mining and machine learning area, features targeting and selection are crucial topics in the real world applications. Unfortunately, massive redundant or unrelated features significantly deteriorate the performance of learning algorithm. This paper presents a novel classification model which combined grey wolf optimizer (GWO) and spectral regression discriminant analysis (SRDA) for selecting the most appropriate features. The GWO algorithm is adopted to iteratively update the currently location of the grey wolf population, while the classification algorithm called SRDA is employed to measure the quality of the selected subset of features. The proposed method is compared with genetic algorithm (GA), Jaya, and three recent proposed Rao algorithms also with SRDA as the classifier over a set of UCI machine learning data repository. The experimental results show that the proposed method achieves the lower classification error rate than that of GA and other corresponding methods generally.

Details

Database :
OpenAIRE
Journal :
Communications in Computer and Information Science ISBN: 9789811534249, BIC-TA (1)
Accession number :
edsair.doi...........c28c2d450648fa0cbcefd5301da8e38a
Full Text :
https://doi.org/10.1007/978-981-15-3425-6_45