Back to Search Start Over

A homemade self-healing material utilized as multi-functional binder for long-lifespan lithium–sulfur batteries

Authors :
Zhihao Yu
Ying Yang
Li Wang
Tianji Gao
TrungHieu Le
Wenxuan Wang
Source :
Journal of Materials Science: Materials in Electronics. 30:5536-5543
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

This study reports a supramolecular self-healing material as a multi-functional binder for lithium–sulfur batteries. The spontaneously damage repair ability of such a binder can be applied to overcome the short cycle-life issue of lithium–sulfur batteries under low current density with deep galvanostatic cycling. Diamines and polybasic acids are used to synthesize the supramolecular self-healing material. 10 wt% amine groups in this designed material provide a large amount of chemical adsorption sites for polysulfides which can effectively inhibit the shuttling of polysulfides and maintain the content of sulfur species in cathode. This N-rich binder is mixed with the sulfur during preparation, which can improve the effective contacting surface of N function groups and sulfur locally. The cells with pure self-healing material binder achieve an initial capacity of 918 mAh g−1, and maintain a reversible capacity of 469 mAh g−1 after 200 cycles at 0.1C, twice higher than the retention capacity of cells with polyvinylidene fluoride binder. After optimization, the cells with a hybrid binder of self-healing material and polyvinylidene fluoride (weight ratio of 1:1) with a sulfur loading of 2.65 mg cm−2 achieve an initial capacity of 993 mAh g−1, and remain a reversible capacity of 571 mAh g−1 with a capacity fade of 0.2% per cycle after 200 cycles at 0.1C.

Details

ISSN :
1573482X and 09574522
Volume :
30
Database :
OpenAIRE
Journal :
Journal of Materials Science: Materials in Electronics
Accession number :
edsair.doi...........c2ac8684b6cfe24ee91e00ad4887312a