Back to Search Start Over

Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study

Authors :
Hao Tong
Xin Yao
Changwu Huang
Leandro L. Minku
Source :
Information Sciences. 562:414-437
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Surrogate-assisted evolutionary algorithms (SAEAs), which use efficient surrogate models or meta-models to approximate the fitness function in evolutionary algorithms (EAs), are effective and popular methods for solving computationally expensive optimization problems. During the past decades, a number of SAEAs have been proposed by combining different surrogate models and EAs. This paper dedicates to providing a more systematical review and comprehensive empirical study of surrogate models used in single-objective SAEAs. A new taxonomy of surrogate models in SAEAs for single-objective optimization is introduced in this paper. Surrogate models are classified into two major categories: absolute fitness models, which directly approximate the fitness function values of candidate solutions, and relative fitness models, which estimates the relative rank or preference of candidates rather than their fitness values. Then, the characteristics of different models are analyzed and compared by conducting a series of experiments in terms of time complexity (execution time), model accuracy, parameter influence, and the overall performance when used in EAs. The empirical results are helpful for researchers to select suitable surrogate models when designing SAEAs. Open research questions and future work are discussed at the end of the paper.

Details

ISSN :
00200255
Volume :
562
Database :
OpenAIRE
Journal :
Information Sciences
Accession number :
edsair.doi...........c2b9e72eb44f4fb100b048cb0633389e
Full Text :
https://doi.org/10.1016/j.ins.2021.03.002