Back to Search Start Over

Enhanced Near-Inertial Waves and Turbulent Diapycnal Mixing Observed in a Cold- and Warm-Core Eddy in the Kuroshio Extension Region

Authors :
Qi Li
Zhaohui Chen
Shoude Guan
Haiyuan Yang
Zhao Jing
Yongzheng Liu
Bingrong Sun
Lixin Wu
Source :
Journal of Physical Oceanography. 52:1849-1866
Publication Year :
2022
Publisher :
American Meteorological Society, 2022.

Abstract

Shipboard observations of upper-ocean current, temperature–salinity, and turbulent dissipation rate were used to study near-inertial waves (NIWs) and turbulent diapycnal mixing in a cold-core eddy (CE) and warm-core eddy (WE) in the Kuroshio Extension (KE) region. The two eddies shed from the KE were energetic, with the maximum velocity exceeding 1 m s−1 and relative vorticity magnitude as high as 0.6f. The mode regression method was proposed to extract NIWs from the shipboard ADCP velocities. The NIW amplitudes were 0.15 and 0.3 m s−1 in the CE and WE, respectively, and their constant phase lines were nearly slanted along the heaving isopycnals. In the WE, the NIWs were trapped in the negative vorticity core and amplified at the eddy base (at 350–650 m), which was consistent with the “inertial chimney” effect documented in existing literature. Outstanding NIWs in the background wavefield were also observed inside the positive vorticity core of the CE, despite their lower strength and shallower residence (above 350 m) compared to the counterparts in the WE. Particularly, the near-inertial kinetic energy efficiently propagated downward and amplified below the surface layer in both eddies, leading to an elevated turbulent dissipation rate of up to 10−7 W kg−1. In addition, bidirectional energy exchanges between the NIWs and mesoscale balanced flow occurred during NIWs’ downward propagation. The present study provides observational evidence for the enhanced downward NIW propagation by mesoscale eddies, which has significant implications for parameterizing the wind-driven diapycnal mixing in the eddying ocean. Significance Statement We provide observational evidence for the downward propagation of near-inertial waves enhanced by mesoscale eddies. This is significant because the down-taking of wind energy by the near-inertial waves is an important energy source for turbulent mixing in the interior ocean, which is essential to the shaping of ocean circulation and climate. The anticyclonic eddies are widely regarded as a conduit for the downward near-inertial energy propagation, while the cyclonic eddies activity influencing the near-inertial waves propagation lacks clear cognition. In this study, enhanced near-inertial waves and turbulent dissipation were observed inside both cyclonic and anticyclonic eddies in the Kuroshio Extension region, which has significant implications for improving the parameterization of turbulent mixing in ocean circulation and climate models.

Subjects

Subjects :
Oceanography

Details

ISSN :
15200485 and 00223670
Volume :
52
Database :
OpenAIRE
Journal :
Journal of Physical Oceanography
Accession number :
edsair.doi...........c308a831289a710a84ccaa44188fa329
Full Text :
https://doi.org/10.1175/jpo-d-21-0160.1