Back to Search Start Over

Vision-based bicycle and motorcycle detection using a YOLO-based Network

Authors :
C J M Dequito
II M O Cordel
M Y K T Minaga
N P A Del Gallego
I J L Dichaves
R J G Juan
Joel P. Ilao
Source :
Journal of Physics: Conference Series. 1922:012003
Publication Year :
2021
Publisher :
IOP Publishing, 2021.

Abstract

This paper describes a system that can distinguish between visually-similar objects, specifically bicycles and motorcycles, successfully from the vantage point of traffic surveillance cameras. The You Only Look Once (YOLO) is used as the main framework in this research due to its speed performance among various machine learning models and methods evaluated. We built a dataset consisting of motorcycle and bicycle images from different CCTV footage for this project. CCTV footage may vary on the angle of view from the object, image resolution, and ambient environment settings. Using this dataset, we trained YOLOv3-based models, and their performances were compared to the vanilla version of YOLOv3 and other pre-trained models. Four (4) models were trained and compared; the best-performing model is shown to be associated with a dataset with properly labeled data (i.e., marking every instance of the object of interest) and having the most number of instances in the training and testing set.Introduction.

Details

ISSN :
17426596 and 17426588
Volume :
1922
Database :
OpenAIRE
Journal :
Journal of Physics: Conference Series
Accession number :
edsair.doi...........c60fe7482774a914f868fae36289be9f
Full Text :
https://doi.org/10.1088/1742-6596/1922/1/012003