Back to Search Start Over

Environmentally responsive dual-targeting nanotheranostics for overcoming cancer multidrug resistance

Authors :
Xianming Deng
Xian-Zheng Zhang
Gan Lin
Xiaoyong Wang
Gang Liu
Xin Pang
Chengchao Chu
Xiaoyuan Chen
Wei-Hai Chen
Caixia Yang
Source :
Science Bulletin. 64:705-714
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

The development of multiple drug resistance (MDR) to chemotherapy and subsequent treatment failures are major obstacles in cancer therapy. An attractive option for combating MDR is inhibiting the expression of P-glycoprotein (P-gp) in tumor cells. Here, we report a novel chemosensitizing agent, XMD8-92, which can down-regulate P-gp. To enhance the specificity of MDR chemotherapy, a promising nanotheranostic micelle system based on poly(ethylene glycol)-blocked-poly(L-leucine) (PEG-b-Leu) was developed to simultaneously carry the anticancer drug doxorubicin, chemosensitizing agent XMD8-92, and superparamagnetic iron oxide nanoparticles (SPIOs). Featured with MDR environmentally responsive dual-targeting capability, controllable drug delivery, and efficient magnetic resonance (MR) imaging characteristics, the prepared nanotheranostics (DXS@NPs) showed outstanding in vitro cytotoxicity on MDR cells (SCG 7901/VCR) with only 53% of cells surviving compared to 90% of DOX-treated cells. Furthermore, efficient tumor inhibition and highly reduced systemic toxicity were exhibited by MDR tumor-bearing mice treated with DXS@NPs. Overall, the environmentally responsive dual-targeting nanotheranostics represent a promising approach for overcoming cancer MDR.

Details

ISSN :
20959273
Volume :
64
Database :
OpenAIRE
Journal :
Science Bulletin
Accession number :
edsair.doi...........c727bb636069794900f63a2d269aac0e