Back to Search
Start Over
Effect of Surface Oxidation on the Onset of Nucleate Boiling in a Materials Test Reactor Coolant Channel
- Source :
- Journal of Nuclear Engineering and Radiation Science. 2
- Publication Year :
- 2016
- Publisher :
- ASME International, 2016.
-
Abstract
- The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29∶1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750 to 3000 kg/m2 s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.
- Subjects :
- Pressure drop
Radiation
Materials science
Analytical chemistry
Thermodynamics
02 engineering and technology
021001 nanoscience & nanotechnology
01 natural sciences
010305 fluids & plasmas
Forced convection
Coolant
Superheating
Nuclear Energy and Engineering
Heat flux
Boiling
0103 physical sciences
Heat transfer
0210 nano-technology
Nucleate boiling
Subjects
Details
- ISSN :
- 23328975 and 23328983
- Volume :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of Nuclear Engineering and Radiation Science
- Accession number :
- edsair.doi...........c84d30ece099c3310207e7a6084254ae