Cite
Self-learning locally-optimal hypertuning using maximum entropy, and comparison of machine learning approaches for estimating fatigue life in composite materials of the aerospace industry
MLA
Ismael Ben-Yelun, et al. “Self-Learning Locally-Optimal Hypertuning Using Maximum Entropy, and Comparison of Machine Learning Approaches for Estimating Fatigue Life in Composite Materials of the Aerospace Industry.” Engineering Structures, vol. 283, May 2023, p. 115829. EBSCOhost, https://doi.org/10.1016/j.engstruct.2023.115829.
APA
Ismael Ben-Yelun, Miguel Díaz-Lago, Luis Saucedo-Mora, Miguel Ángel Sanz, Ricardo Callado, & Francisco Javier Montáns. (2023). Self-learning locally-optimal hypertuning using maximum entropy, and comparison of machine learning approaches for estimating fatigue life in composite materials of the aerospace industry. Engineering Structures, 283, 115829. https://doi.org/10.1016/j.engstruct.2023.115829
Chicago
Ismael Ben-Yelun, Miguel Díaz-Lago, Luis Saucedo-Mora, Miguel Ángel Sanz, Ricardo Callado, and Francisco Javier Montáns. 2023. “Self-Learning Locally-Optimal Hypertuning Using Maximum Entropy, and Comparison of Machine Learning Approaches for Estimating Fatigue Life in Composite Materials of the Aerospace Industry.” Engineering Structures 283 (May): 115829. doi:10.1016/j.engstruct.2023.115829.