Back to Search
Start Over
Identification and characterization of abrupt changes in the land uptake of carbon
- Source :
- Global Biogeochemical Cycles. 26
- Publication Year :
- 2012
- Publisher :
- American Geophysical Union (AGU), 2012.
-
Abstract
- [1] A recent study of the net land carbon sink estimated using the Mauna Loa, Hawaii atmospheric CO2record, fossil fuel estimates, and a suite of ocean models suggests that the mean of the net land carbon uptake remained approximately constant for three decades and increased after 1988/1989. Due to the large variability in the net land uptake, it is not possible to determine the exact timing and nature of the increase robustly by visual inspection. Here, we develop a general methodology to objectively determine the nature and timing of the shift in the net land uptake based on the Schwarz Information Criterion. We confirm that it is likely that an abrupt shift in the mean net land carbon uptake occurred in 1988. After taking into account the variability in the net land uptake due to the influence of volcanic aerosols and the El Nino Southern Oscillation, we find that it is most likely that there is a remaining step increase at the same time (p-values of 0.01 and 0.04 for Mauna Loa and South Pole, respectively) of about 1 Pg C/yr. Thus, we conclude that neither the effect of volcanic eruptions nor the El Nino Southern Oscillation are the causes of the sudden increase of the land carbon sink. By also applying our methodology to the atmospheric growth rate of CO2, we demonstrate that it is likely that the atmospheric growth rate of CO2 exhibits a step decrease between two fitted lines in 1988–1989, which is most likely due to the shift in the net land uptake of carbon.
- Subjects :
- Atmospheric Science
Global and Planetary Change
geography
geography.geographical_feature_category
business.industry
Fossil fuel
Carbon uptake
Carbon sink
chemistry.chemical_element
El Niño Southern Oscillation
Volcano
chemistry
Climatology
Environmental Chemistry
Environmental science
Growth rate
business
Carbon
General Environmental Science
Subjects
Details
- ISSN :
- 08866236
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Global Biogeochemical Cycles
- Accession number :
- edsair.doi...........c8f2594c7ffd7a5f15604a1e68f28335