Back to Search Start Over

Water absorption capacity of soil-incorporated plant leaves can affect N2O emissions and soil inorganic N concentrations

Authors :
Jessica E. Fry
Andrey Guber
Alexandra Kravchenko
Source :
Soil Biology and Biochemistry. 121:113-119
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Soil incorporation of aboveground plant residues contributes to enhancement of soil sustainability in agricultural systems with cover crops. However, incorporated plant fragments can affect N2O emissions by acting as micro-scale hotspots of N2O production. We hypothesize that water retention capacity of the incorporated plant material and soil pore-size distribution (PSD) are among the factors influencing the magnitude of N2O emissions from the soil subjected to aboveground plant residue additions. To test this hypothesis we compared CO2 and N2O emissions from two soil materials with contrasting PSD incubated with leaves from two legume species similar in their C and N contents, but differing in physical characteristics of their leaves, i.e., crimson and red clovers. In order to separate the effect of biochemical differences between the two species from the differences in the physical characteristics of their leaves we considered three leaf treatments: (i) intact leaves, (ii) ground leaf material aggregated to resemble the size of the intact leaves, and (iii) ground leaf material uniformly mixed with the soil. The latter two treatments minimized the physical differences between the leaves of the two species. Intact leaves of crimson clover retained more water than the red clover leaves. At the studied 50% of water filled pore space settings, both species retained more water when incubated in the soil material with prevalence of large (>30 μm) pores than in the soil material with prevalence of small ( 30 μm) pores.

Details

ISSN :
00380717
Volume :
121
Database :
OpenAIRE
Journal :
Soil Biology and Biochemistry
Accession number :
edsair.doi...........c9c2188c848cee05d3ca73ab96091b77
Full Text :
https://doi.org/10.1016/j.soilbio.2018.03.013